12 template <
typename group_t>
23 template <
typename group_t>
26 typedef typename group_t::rank_t rank_t;
27 typedef typename group_t::diff_t diff_t;
61 int select(
int,
int)
const;
71 template <
typename group_t>
74 typedef typename group_t::rank_t rank_t;
75 typedef typename group_t::diff_t diff_t;
94 template <
typename rank_t,
typename diff_t>
98 int padright, padleft;
100 int degreeC, degreeD;
103 void pad(
const std::vector<int64_t> &detailedrank);
117 template <
typename group_t>
120 typedef typename group_t::rank_t rank_t;
121 typedef typename group_t::diff_t diff_t;
127 rank_t rank_bottom, rank_level;
128 const int level, degreeC, degreeD;
149 #include "impl/Green.ipp"
Contains the class mackey::Tensor.
Contains the classes mackey::IDGenerators and mackey::internal::IDGeneratorCompute
Contains the methods for transfering, restricting and Weyl-group-acting.
A chain complex.
Definition: Chains.hpp:31
The result of multiplying generators in a Green functor.
Definition: Green.hpp:25
AbelianGroup< rank_t > group
The homology group the product lives in.
Definition: Green.hpp:30
IDGenerators< rank_t > boxID
Identifies the generators of the homology group the product lives in.
Definition: Green.hpp:32
bool operator==(const Green< group_t > &) const
rank_t getNormalBasis(int i, const rank_t &b) const
Returns the (normalized) product of the selected generator with another element.
rank_t getNormalBasis(const rank_t &, const rank_t &) const
Returns the (normalized) product of the given two elements (not necessarily generators)
bool isZero
1 if the homology group the product lives in is 0.
Definition: Green.hpp:31
int first_number_selections
The number of selections of generators for the first factor.
Definition: Green.hpp:55
std::vector< rank_t > basis
For each selection of generators the product is a linear combination of generators in its degree.
Definition: Green.hpp:54
rank_t getNormalBasis(int i, int j) const
Returns the (normalized) product of the selected generators.
Green(const Chains< rank_t, diff_t > &, const Chains< rank_t, diff_t > &, int, int, int)
Computes the product of generators given chains, degrees and level.
int second_number_selections
The number of selections of generators for the second factor.
Definition: Green.hpp:56
rank_t getNormalBasis(const rank_t &a, int j) const
Returns the (normalized) product of the given element with the selected generator.
The Homology of a Junction.
Definition: Homology.hpp:19
diff_t_C Gens_t
The type of our matrix of generators.
Definition: Homology.hpp:27
Two levels of a Mackey functor, used for identification.
Definition: Identify.hpp:13
Computes the homology at given level, the generators and their restrictions.
Definition: Green.hpp:73
Computes the product of generators in a Green functor.
Definition: Green.hpp:119
Computes Massey products and their indeterminacy.
Definition: Massey.hpp:37
Computes the product of generators at the bottom level.
Definition: Green.hpp:96
Everything in this library is under this namespace.
Definition: Box.hpp:9
typename Homology< rank_t, diff_t >::gen_t gen_t
Type of generators in homology.
Definition: Aliases.hpp:72
group_t::rank_t multiply(const chains_t< group_t > &C, const chains_t< group_t > &D, int level, int degreeC, int degreeD, int selectC=0, int selectD=0)