12 template<
typename rank_t>
16 typedef Eigen::Matrix<
typename rank_t::Scalar, -1, -1>
matrix_t;
33 template<
typename rank_t>
38 template<
typename rank_t>
45 template<
typename group_t>
47 typedef typename group_t::rank_t rank_t;
48 typedef typename group_t::diff_t diff_t;
65 template<
typename,
typename>
79 #include "impl/Identify.ipp"
Contains the class mackey::Homology.
Contains the class mackey::MackeyFunctor.
The Homology of a Junction.
Definition: Homology.hpp:19
Two levels of a Mackey functor, used for identification.
Definition: Identify.hpp:13
AbelianGroup< rank_t > group
The homology group at our level.
Definition: Identify.hpp:17
matrix_t tr
The transfer from one level lower to our level.
Definition: Identify.hpp:19
Eigen::Matrix< typename rank_t::Scalar, -1, -1 > matrix_t
The matrix type of the transfer and restriction matrices.
Definition: Identify.hpp:16
bool operator==(const IDGenerators< rank_t > &) const
Standard equality tests if all group, group_lower, tr, res are equal.
matrix_t res
The restriction from our level to one lower.
Definition: Identify.hpp:20
MackeyFunctor< rank_t > getMackey() const
Get a two-level Mackey functor out of this data.
IDGenerators()=default
Default Constructor.
AbelianGroup< rank_t > group_lower
The homology group at one level lower.
Definition: Identify.hpp:18
A Mackey Functor.
Definition: MackeyFunctor.hpp:18
Computes the product of generators in a Green functor.
Definition: Green.hpp:119
Computes homology and identification data.
Definition: Identify.hpp:46
IDGeneratorCompute(int, const Junction< rank_t, diff_t > &, bool=0)
Computes the identification data given level, Junction at the bottom, and optionally if we want to st...
friend class TableInput
Forms the input of the Multiplication Table.
Definition: Identify.hpp:66
IDGenerators< rank_t > ID
The identification data.
Definition: Identify.hpp:50
Computes Massey products and their indeterminacy.
Definition: Massey.hpp:37
Everything in this library is under this namespace.
Definition: Box.hpp:9
bool distinguish(const std::vector< rank_t > &, const IDGenerators< rank_t > &)
Find if given elements can all be distinguished i.e. they have pairwise disjoint candidate sets.
std::vector< rank_t > id_candidates(const rank_t &, const IDGenerators< rank_t > &, const IDGenerators< rank_t > &)
Use the ID data to identify all possible candidates for an element.