![]() |
Symmetric Polynomials
V3.1
A C++ library for generating symmetric polynomials with relations
|
Contains the methods and classes for symmetric polynomials with half idempotent variables. More...
Go to the source code of this file.
Classes | |
| struct | HalfIdempotentVariables< T, _deg, N > |
| Variables \(x_1,...,x_n,y_1,...,y_n\) with \(y_i^2=y_i\) and \(|x_i|=1\), \(|y_i|=0\). More... | |
| struct | TwistedChernVariables< T, _deg > |
| The twisted Chern generators as variables \(\gamma_{s,j}\). More... | |
| class | TwistedChernBasis< xy_poly_t, chern_poly_t > |
| Class for half-idempotent symmetric polynomials. More... | |
Namespaces | |
| symmp | |
| The namespace which contains every method and class in the library. | |
Functions | |
| template<class xy_poly_t , class chern_poly_t > | |
| void | print_half_idempotent_relations (int n, bool print=1, bool verify=1, bool verify_verbose=1) |
| Prints the relations of \(\Big(\mathbf Z[x_1,...,x_n,y_1,...,y_n]/(y_i^2=y_i)\Big)^{\Sigma_n}\). More... | |
Contains the methods and classes for symmetric polynomials with half idempotent variables.
The goal is to solve the following problem: If
\[R=\mathbf Z[x_1,...,x_n,y_1,...,y_n]/(y_i^2=y_i)\]
produce minimal algebra generators for the fixed points of \(R\) under the \(\Sigma_n\) action (permuting the \(x_i,y_i\) separately), give an algorithm for writing a fixed point in terms of the generators and an algorithm for producing the relations of those generators.