THE RO(C4,) COHOMOLOGY OF THE INFINITE REAL PROJECTIVE

SPACE

NICK GEORGAKOPOULOS

ABsTRACT. Following the Hu-Kriz method of computing the C; genuine dual
Steenrod algebra 714 (HIF2 AHF,) 2, we calculate the C4 equivariant Bredon co-
homology of the classifying space R P* = B¢, X, as an RO(Cy) graded Green-
functor. We prove that as a module over the homology of a point (which we
also compute), this cohomology is not flat. As a result, it can’t be used as a test
module for obtaining generators in 77y (HFy AHIF;)% as Hu-Kriz use it in the
C, case.
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1. INTRODUCTION

Historically, computations in stable equivariant homotopy theory have been
much more difficult than their nonequivariant counterparts, even when the groups
involved are as simple as possible (i.e. cyclic). In recent years, there has been a
resurgence in such calculations for power 2-cyclic groups Cyn, owing to the crucial
involvement of Cg-equivariant homology in the solution of the Kervaire invariant
problem [HHR16].

The case of G = C; is the simplest and most studied one, partially due to its
connections to motivic homotopy theory over R by means of realization functors
[HO14]. It all starts with the RO(C;) homology of a point, which was initially
described in [Lew88]. The types of modules over it that can arise as the equivari-
ant homology of spaces were described in [CMay18], and this description was
subsequently used in the computation of the RO(C;) homology of Cp-surfaces
in [Haz19]. The Cj-equivariant dual Steenrod algebra (in characteristic 2) was
computed in [HK96] and gives rise to a Cp-equivariant Adams spectral sequence
that has been more recently leveraged in [[WX20]. Another application of the
Hu-Kriz computation is the definition of equivariant Dyer-Lashof operations by
[Wil19] in the [Fp-homology of Cp-spectra with symmetric multiplication. Many
of these results rely on the homology of certain spaces being free as modules
over the homology of a point, and there is a robust theory of such free spectra
described in [Hil19].

The case of G = C4 has been much less explored and is indeed considerably
more complicated. This can already be seen in the homology of a point in integer
coefficients (see [Zeng17] and [Geo19]) and the case of [F, coefficients is not much
better (compare subsections 3.1 and 3.2 for the C, and Cy4 cases respectively).
The greater complexity in the ground ring (or to be more precise, ground Green
functor), means that modules over it can also be more complicated and indeed,
certain freeness results that are easy to obtain in the C, case no longer hold when
generalized to C4 (compare subsection 4.1 with sections 6 and 7).

The computation of the dual Steenrod algebra relies on the construction of
Milnor generators. Nonequivariantly, the Milnor generators §; of the mod 2
dual Steenrod algebra can be defined through the completed coaction of the dual
Steenrod algebra on the cohomology of BX; = R P®: H*(BCy4;Fy) = F»[x] and
the completed coaction FFp[x] — (HF,).(HFy)[[x]] is:

Xi—>2x2i®éi
i

In the Cy-equivariant case, the space replacing BY, is the equivariant classifying
space Bc,X». This is still R P® but now equipped with a nontrivial C; action
(described in subsection 4.1). Over the homology of a point, we no longer have a
polynomial algebra on a single generator x, but rather a polynomial algebra on
two generators ¢, b modulo the relation

2 = ayc+ ugh
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where a,, 1, are the Cp-Euler and orientation classes respectively (defined in sec-
tion 2). As a module, this is still free over the homology of a point, and the
completed coaction is

cr el Y P o
i

b— szi ® G
i

The T1;, {; are the Cy-equivariant analogues of the Milnor generators, and Hu-Kriz
show that they span the genuine dual Steenrod algebra.

For Cy4, the cohomology of B¢, is significantly more complicated (see section
7) and most importantly is not a free module over the homology of a point. In
fact, it’s not even flat (Proposition 5.3) bringing into question whether we even
have a coaction by the dual Steenrod algebra in this case.

There is another related reason to consider the space Bc,¥». In [Will9], the
author describes a framework for equivariant total power operations over an H [F,
module A equipped with a symmetric multiplication. The total power operation
is induced from a map of spectra

A — A0

where (=)™ is a variant Tate construction defined in [Wil19].
In the nonequivariant case, A — A™2 induces a map A, — A.((x)) and the
Dyer-Lashof operations Q' can be obtained as the components of this map:

Q) = Y. Q(w)x'

t

In the C; equivariant case, we have a map Ay — Ag[c,b¥]/(c* = agsc + uyb)
and we get power operations
Q(x) = QP ()b’ + Y QP (x)cb’
1 1
When A = HIFy, Ay[c,b*]/(c®> = agc + u,b) is the cohomology of Bc,%, local-
ized at the class b.

For C4 we would have to use the cohomology of Bc,X, (localized at a certain
class) but that is no longer free, meaning that the resulting power operations
would have extra relations between them and further complicating the other ar-
guments in [Wil19].

The computation of H* (B¢, Xo.;IF>) also serves for a test case of RO(G) ho-
mology computations for equivariant classifying spaces where G is not of prime
order. We refer the reader to [Shul4], [Chol8], [Wil19], [SW21] for such compu-
tations in the G = C, case.

As for the organization of this paper, section 2 describes the conventions and
notations that we shall be using throughout this document, as well as the Tate
diagram for a group G and a G-equivariant spectrum.

Subsections 3.1 and 3.3 describe the Tate diagram for C; and Cy4 respectively
using coefficients in the constant Mackey functor IFy.

In section 4 we define equivariant classifying spaces BGH and briefly explain
the elementary computation of the cohomology of Bc,X, (this argument also
appears in [Wil19]).
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In section 5 we present the result of the computation of H* (B¢, %,;F,) and
prove that it’s not flat as a Mackey functor module over (HIF;) 4. Sections 6 and
7 contain the proofs of the computation of the cohomology of Bc,%».

We have included two appendices in the end; Appendix A contains pictures of
the spectral sequence converging to H* (B¢ ,Xo+;F2) while Appendix B contains
a detailed description of H*(S%TF,), which is the ground Green functor over
which all our Mackey functors are modules.

To aid in the creation of these appendices, we extensively used the computer
program of [Geo19] available here. In fact, we have introduced new functionality
in the software that computes the RO(G)-graded homology of spaces such as
Bc, 2o given an explicit equivariant CW decomposition (such as we discuss in
subsection 6.1). This assisted in the discovery of a nontrivial d? differential in
the spectral sequence of B¢, (see Remark 7.6), although the provided proof is
independent of the computer computation.

Acknowledgment. We would like to thank Dylan Wilson for answering our ques-
tions regarding his paper [Wil19] as well as [HK96]. We would also like to thank
Peter May for his numerous editing suggestions, that vastly improved the read-
ability of this paper.

2. CONVENTIONS AND NOTATIONS

We will use the letter k to denote the field [F,, the constant Mackey functor
k = F, and the corresponding Eilenberg-MacLane spectrum Hk. The meaning
should always be clear from the context.

All our homology and cohomology will be in k coefficients.

The data of a C4 Mackey functor M can be represented by a diagram displaying
the values of M on orbits, its restriction and transfer maps and the actions of the
Weyl groups. We shall refer to M(C4/Cs), M(C4/Cz), M(Cq4/e) as the top, middle
and bottom levels of the Mackey functor M respectively. The Mackey functor
diagram takes the form:

M(Cy/Cy)
Res%(/ ,jTr‘;
M= M(C/C) :>c4/c2
Res%(/ ’)Tr%
M(Cy/e) :>c4

If X is a G-spectrum then X4 denotes the RO(G)-graded G-Mackey functor
defined on orbits as

Xx(G/H) = X§ = af (s A X) = [s*, X]"
The index % will always be an element of the real representation ring RO(G).

RO(Cy) is spanned by the irreducible representations 1,0, A where ¢ is the 1-
dimensional sign representation and A is the 2-dimensional representation given
by rotation by 7/2.
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For V.= g or V = A, denote by ay € kg‘v the Euler class induced by the
inclusion of north and south poles S0 < SV: also denote by uy € kﬁﬁFV the
orientation class generating the Mackey functor kyy_y = k.

We will use the notation ay, iy to denote the restrictions of ay, uy to middle
level, and iy to denote the restriction of uy to bottom level.

We also write a5, € k%,z and u,, € kfi o, for the C; Euler and orientation
classes, where 7 is the sign representation of C,.

The Gold Relation ([HHR16]) takes the following form in k coefficients:
atzru A=0
Let EG be a contractible free G-space and EG be the cofiber of the collapse map
EG; — S°. We use the notation X;, = EG; A X, X = EGA X, X" = F(EG,X)

and X! = Xh.
The Tate diagram ([GM95]) then takes the form:

X, — X — X

oL

X — X" —— Xt
The square on the right is a homotopy pullback diagram and is called the Tate

square.
Applying 7'[;3( on the Tate diagram gives

XnGw X$ XS

*
XnGae Xhe Xlg

3. THE TATE DIAGRAM FOR Cy AND C4

3.1. The Tate diagram for C;. For X = k and G = C; the corners of the Tate
square are:

afrzuéz
7C +
k* = k[aaz,ugz]

K = Klagy, ttay] @ k{ Yijz0

hC +
ko = klag,, ug,]

tC + .+
k*2 = k[aaz,ugz]

where 0,, = Tr}(Res?(ug,) 2). The map k;, — k in the Tate diagram induces
—17.tC hC C
kncyae = K2 /K — K
9g2
j—1

i
g, Ug,
5

—i, =
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3.2. The RO(C4) homology of a point. The RO(Cs) homology of a point (in k
coefficients) is significantly more complicated than the RO(C;) one (see [Geo19]
for the integer coefficient case). Appendix B contains a very detailed description
of it, and the goal in this subsection is to provide a more compact version.

The top level is:

C uy, az 0 5 117+€ iﬂ}fre
K = Klag, ug,ap,up, ~ 7, ~Z] @ Klay {——} O k{“ =} @ kg {2} (1)
Uy a) aug ugay ayuy

where the indices 7, j, m range in 0,1,2, ... and € ranges in 0, 1.

The use of = as opposed to = is meant to signify some subtlety present in
(1) that needs to be clarified before the equality can be used. This subtlety has
to do with how quotients are defined (cf [Geo19]) and how elements multiply
(the multiplicative relations). We begin this process of interpreting (1) with the
definition of 6: 8 = Tr3(#i;2). We further introduce the elements
X0,1

n,m—1"
oUy

Xpm = T3(a, "7, ") = m>1
where )
0 a
xO,l = 613* =0 A
aj an
With this notation, the second curly bracket in (1) contains elements of the form
Xn,1 Xn,1
ay  agay
and the third contains
Xnm  Xnm

a, ’ agal
A oy

,m>1

The behavior of the x;,,;, depends crucially on whether m = 1 or not: x,, ju, = 0
but x, 1, # 0 for m > 1; the x, 1 are infinitely a, divisible since:

Xn,1 - 0

ag  ugap

while the x;,,,, m > 1, can only be divided by a, once. That’s why we separate
them into two distinct summands in (1).
The third curly bracket in (1) for e = 0 consists of quotients of

9,

a ‘o X0 2Uo
S = uU' =

u/\ Ao

which is the mod 2 reduction of the element s from [Geo19]. Note that su, =
say, = 0.

The quotients in the RHS of (1) are all chosen coherently (cf [Geo19]), that is
we always have the cancellation property:

.. 4 _Y
Xz X
We also have that
X z_x
y w yw

as long as xz # 0 (this condition is necessary: (6/a))as # 0 is not (0a,)/a, as
fa, = 0).
6



To compute any product of two elements in the RHS of (1) we follow the
following procedure:

e If both elements involve 6 then the product is automatically 0.
o If neither element involves 6 then perform all possible cancellations and use
the relation

e If only one element involves 6 perform all possible cancellations and use
X z Xz

y wooyw
as long as xz appears in (1). If the resulting element appears in (1) then that’s
the product; if not then the product is 0.
These are all the remarks needed to properly interpret the formula in (1) for the
top level k%.
The middle level is:
k%iwwmﬂbdmammﬂ@kwﬂ{f—fl——f
CONGU
Here, \/a,11, is the (unique) element whose square is 4,1, and v is defined by
v =Tr? (ﬁxl). Furthermore,

¥ 2

agu)\

T (Vi) =

The interpretation of (2) is complete. In terms of the notation of the C; generators,
Ay = ag, , ) = g, , /AN = Aoy, , 0 = O,
Finally the bottom level is very simple:
K = K[y, ;]
For more details, consult the Appendix B.

3.3. The Tate diagram for C,4. Using the notation of the previous subsection, the
corners of the Tate square are:

c L[)L uz 9 a(17—+€ ia};‘re

. + a a

K5 = Klag, g, a0, ™2, ) @ Kl (=0} @ k() & ku){ g
Uy ay abul, uaa/\ ayuy

7C. 1,.C + Uj
k4—ﬂ/\ k4_k[ﬂg,ua,aA,u/\,T]@k[aA]
Ug gl

hC e 41,2
k*4_k[a0'/ U/aA/uA]/

tC + 41,2
k 4:k[aa, U,a/\,u/\]/a
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The map kj — k in the Tate diagram induces
—17tCy 1.hC C.
kncoa = Z K /K — K
0

. —lg

—i —],,—m a)
R N

4. EQUIVARIANT CLASSIFYING SPACES

EgKis a G x K space that’s K-free and (EgK)! is contractible for any subgroup
I' CGxKwithT'N ({1} x K) = {1} (a graph subgroup). The spaces EGL, are
those appearing in a G-Ex-operad.

We define the equivariant classifying space

BcK = EgK/K

4.1. The case of C;. For G = (, the spaces Bc,X, are used in the computation
of the C; dual Steenrod algebra by Hu-Kriz ([HK96]) and for the construction of
the total Cp-Dyer-Lashof operations in [Wil19]. Both use the computation

k% (Be,Zo+) = k& [c, 0]/ (% = g,¢ + gy b)

where ¢, b are classes in cohomological degrees 02,1 + 0, respectively. Let us note
here that B¢,%; is R P* with a nontrivial C; action; the restrictions of ¢, b are the
generators of degree 1,2 of k, (R P%®).

We shall now summarize this computation, since part of it will be needed for
the analogous computation when G = C; which takes place in sections 5-7.

Let o, T be the sign representations of Cy, >y respectively and p = 1+ . Then
Ec,Xp = S(co(p ® T)); the graph subgroups of C; x X are Cp, A and their orbits
correspond to the cells

CZXZZ
27 g(1
S S(1®T)
X
CZZ 225(0'@7_')

[Wil19] defines a filtration on Ec,X, given by
SAet)cS(eer) CS((p+1)@T) S S(2p@T) S -
and whose quotients (after adjoining disjoint basepoints) are

G x X A §UDpe1-1
+
8raj = Tpy NS

8Mj+1 =

Quotiening %, gives a filtration for B¢, with

8Mj+1 = si+1pel-1

gry; = S
Applying k* yields a spectral sequence
E' = kX {elf, el ™7} = k*(Bc,Za4)
of modules over the Green functor k*. The fact that the differentials are module

maps gives E; = E; for degree reasons. Furthermore, the vanishing of the RO(C;)
8



homology of a point in a certain range gives E; = E. The Ey page is free as a
module over the Green functor k*, hence there can’t be any extension problems
and we get the module structure:

k* (Bc,Xoy) = kKX {elf, el 7}
It’s easier to prove (using the homotopy fixed point spectral sequence) that:
K™% (Be,Zp 1) = K'*[w]
where w has cohomological degree 1. The map k — k” from section 2 induces
K* (Be,Zo+) — K"™* (B, Za+)

which is localization with u,, being inverted. Thus we can see that ¢ = ¢” maps
to Uy, W (OF ag, + Ug,w), b = e maps to ag, w + Uy,w? and conclude that:

kX (Be,Zot) = k& [e,0]/ (¢ = a5y + 5, D)

Bc,X» is a Cp-H-space so ké; (Bc,Xo+ ) is a Hopf algebra (since it is flat over ké).
For degree reasons, we can see that
Alc) =c®1+1®c
Ab)=b®1+1®0b
e(c)=€(b)=0

(we can add ag, to c to force €(c) = 0). The primitive elements are spanned by
¢, b?.

5. THE COHOMOLOGY OF B¢, ¥

In the next section we shall construct a cellular decomposition of Bc,X giv-
ing rise to a spectral sequence computing k* (Bc,%,. ). Here’s the result of the
computation, describing k* (B¢, Lz ) as a Green functor algebra over k*:

Proposition 5.1. There exist elements e”, e, et ef in degrees 0 + A, 0+ A —2,A,p00of
ka(BC4Zz+) respectively, such that

* | a ﬂ €
* gl ooy

The relation set S consists of two types of relations (we use indices i,j > 0):

i>0

o Module relations:

az e"

af\ufr
A 2 A
u a5 %l
i-2_j—1 i—1, =27 T i
Uy “a, Ug @y a, Uo



e Multiplicative relations:

et e Uy
= = 3t
Mauff uU]
A LU u
et e uy ,
A ey L S
o Uy Uy o
e u
' — = iflep—i-ag—)‘e”
Uy Uy o
A A A
e _ U)x A a e
i l.+].+1e +as +j+2e +ay e
o [ o g
A n
ut 16 TAr ¢
[ [ [

ell
(e’l)2 = upe’e? + ag—eP + ugayel + aga,e”
Ug

The middle level of k* (Bc, Lo ) is generated by the restrictions of e, e", e", ef, which we
denote by &°,é",&", & respectively, and two quotients as follows:
x [éa g g Vet ayi; et + \/ﬁAﬁ,\éA}
C2 7 7 7 7 — 7 1/_[
kX (Bo, 2oy ) = A
Cz( = Res3(S)

Here, Res3(S) denotes the relation set obtained by applying the ring homomorphism Res)
on each relation of S. That is, we have the module relations for any i > 0:

and the multiplicative relations:

(82 = 1,8 e + fipa,e
As for the Mackey functor structure, the Weyl group C4/Cy action on the generators

is trivial and we have:
o Mackey Functor relations:

At
Tr% (__ Vapiye ) _ e

u

AN L]
a
4 (imagtet + amety et
Ty (i, 5 =
A uy

Finally, the bottom level is

kX (Bc,E21) = kX[Res}(e")]
10



with trivial Weyl group Cy action and Mackey functor relations obtained by applying
Res] to the multiplicative relations of S:

2=—1 4(eu)2

4 A _ =—2=
Resje” =i, i, " Resj

Resje’ =i, Zﬁ)fz Resf(e")?
Res}ef = ﬁf’ﬁ; 3 Resf(e")*
Note: For every quotient y/x there is a defining relation x - (y/x) = y. We
have omitted these implicit module relations from the description above.
The best description of the middle level is in terms of the generators c, b of
, KX [c, b]
ké; (Be,Xo4) = czzg;—c—{—u@b

Here, %' ranges in RO(C;) and to get kgz(BC422+) for % in RO(Cy), we have to
restrict to RO(C;) representations of the form n + 2moy. In this way,
k¥ (Be,Zat) = k& (Be,Zay ) [i75]

where % = 1+ mo + kA in RO(Cy) corresponds to %' = n + m + 2k, in RO(Cy).
The correspondence of generators is:

&' = 1iy(ag,b + be)

&' = flgug,C
=2
& = iigb?

We can also express the map to homotopy fixed points in terms of our gener-
ators:

Proposition 5.2. There is a choice of the degree 1 element w in
K'* (Be,To 1) = KX [w]

so that the localization map ka(BQZer) — KMCX (B, %o ) induced by k — k" and
inverting ug, uy 1s:

et — ugu w

et uyw?

e — Ugup W + Ugayw

e — ugu w? + agu w® + ugayw? + aga,w
Proposition 5.3. The module k* (B¢, %, ) is not flat over k*.

Proof. Let R = k* and M = k*(Bc,Z,). Consider the map f : R — X2 ~*R
given on top level by multiplication with a2/a) and determined on the lower
levels by restricting (so it's multiplication with v#i2 on the middle level and 0 on
the bottom level). If M is a flat R-module then we have an exact sequence

0 — MXg Ker(f) — M 1, w200y

11



The restriction functor Resi from R modules to Resi R modules is exact and
symmetric monoidal, so we replace M, R, Ker(f) by Res3 M, Resj R, Res3 Ker(f)
respectively and have an exact sequence of C; Mackey functors. Using the nota-
tion involving the C; generators ¢, b and writing a = a,,, 4 = us,, we have M =
DisoR{b?, cb? 1} @ ®;5oR{ab? 1, ub?*+1, ach?, uch®}/ ~. The map f maps each
summand to itself, so we may replace M by R{c, ab, ub, acb, ucb}/ ~ and continue
to have the same exact sequence as above. The top level then is:

2
0 — (MRg Ker(f))(C2/Ca) — M(C2/Ca) —% M(C2/Ca)
and v acts trivially on ab, ub, ac, uc i.e. on M(Cp/Cy) so we get
(M &R Ker(f))(C2/C2) = M(C2/Cy)
We compute directly from definition that (M X Ker(f))(C2/Cy) is isomorphic
to M(C/Ca) ®g(c,/c,) I where I := Ker(R = R). But M(C2/Ca) ®gc,/c,) I =
M(Cy/C;) has image IM(C,/C;) hence
IM(Cy/Cp) = M(Cy/Cp)

This contradicts that ab = ¢! is not divisible by any element of the ideal I
(M1 is only divisible by 7’ € R which are not in I). O

6. A CELLULAR DECOMPOSITION OF B¢, ¥

We denote the generators of C4 and X, by g and & respectively; let also T be
the sign representation of X, and p = 1+ ¢ + A the regular representation of Cy.

The graph subgroups of Cy x ¥y are Cy = (g),Co = (¢2),A = (gh),N' =
(g%h),e.

We thus have a model for the universal space:
Ec,Xp = S(eo(p® 7))
and B¢, X, is RP® with nontrivial Cy action:

g(xll X2,X3,X4, ) = ('xl/ —X2, —X4,X3, )
S(oo(p ® 7)) is the space
S(o0) = {(xy) : finitely supported and lez =1}
i

with C4 X X action

g(xl/ X2,X3,X4, X5, ) = (xlr —X2, —X4,X3,X5, )
h(xl, X2, ) = (—xl, —X2, )

We shall use the notation (x1, ..., x,) for the point (x1,...,x,,0,0,..) € S(o0).
Moreover, the subspace of S(o0) where only x, ..., x, are allowed to be nonzero
shall be denoted by {(x1, ..., xn)}.

We now describe a cellular decomposition of Ec,¥o where the orbits are Cy X
Yo /HASY where VisaCy representation.

e Start with {(x1)} the union of two points (1),(—1) and the basepoint. This is

C4 X 22/C4+.

12



e {(x1)} includes in {(x1,x2)} = S(1+0)+. The cofiber is the wedge of two
circles, corresponding to x;, being positive or negative, and the action is

g(x1,+) = (x1,—) , h(x1,+) = (—x1,—)

After applying the self equivalence given by f(x1,+) = (x1,+) and f(x1, —) =
(—x7, —), the action becomes

g(x1,+) = (=x1, =), h(x, +) = (31, -)
This is exactly Cq x Zp/A4 A SC.

o {(x1,x2)} includes in {(x1,x, x3,0), (x1,x2,0,x4)}; the cofiber is the wedge of
four spheres corresponding to the sign of the nonzero coordinate among the
last two coordinates. If we number the spheres from 1 to 4 and use (x,y)’
coordinates to denote them i = 1,2, 3,4 then

gy = (x, =y h(xy) = (—x,—y)
Applying the self equivalence

fay)t =@y, foy)? = (-2, f(x,y)® = (—x,—y)*, f(x,y)* = (y,—x)*

the action becomes g(x,y)’ = (—y,x)™! and h(x,y)’ = (x,y)*? i.e. we have
C4 X ZQ/A/_«_ N S)\.

o {(x1,x2,x3,0),(x1,%2,0,x4)} includes in {(x1,x2,x3,%4)} = S(p ® 7) and the
cofiber is the wedge of four S*’s corresponding to the signs of x3,x;. Analo-
gously to the item above, we get the space Cy x £,/A/ A ST+,

e The process now repeats: {(x1,x2,x3,x4)} includes in {(x1,x2, x3, x4, x5)} and
the cofiber is the wedge of two S*'s corresponding to the sign of x5 and we get
Cy X Z/Cyy A S92 And so on...

We get the decomposition of B¢, where the associated graded is:

i+2

8raj = sie

8raj+1 = giete

8rajn = XPTCy/Cop
8rajps = TITIHAC,/Coy

This filtration gives a spectral sequence of k* modules converging to k* (B¢, %)
that we shall analyze in the next section.

6.1. A decomposition using trivial spheres. The cellular decomposition of Bc, ¥
we just established, consists of one cell in every dimension, whereby “cell” we
mean a space of the form (Cy4/H)4 ASY for H a subgroup of C4 and V a real
non-virtual Cy-representation; let us call this a “type I” decomposition. It is also
possible to obtain a decomposition using only “trivial spheres”, namely with cells
of the form (C4/H) 4 A S"; we shall refer to this as a "type II” decomposition. A
type I decomposition can be used to produce a type II decomposition by replac-
ing each type I cell (C4/H)+ A SV with its type IT decomposition. This is useful
for computer-based calculations, since type II decompositions lead to chain com-
plexes as opposed to spectral sequences (k.((Cy/H)+ ASY) is concentrated in
a single degree if and only if V is trivial). Equipped with a type II decompo-
sition, the computer program of [Geol9] can calculate the additive structure of
13



k* (Bc,%2+) in a finite range (this can be helpful with our spectral sequence cal-
culations: see Remark 7.6).

We note however that a minimal type I decomposition may expand to a non-
minimal type Il decomposition; this is the case for B¢, X, where the minimal type
II decomposition uses 2d + 3 cells in each dimension d > 1, while the one obtained
by expanding the type I decomposition uses 3d 4 3 cells in each dimension d > 1.
It is the minimal decomposition that we have used as input for the computer
program of [Geol9].

7. THE SPECTRAL SEQUENCE FOR BC4ZZ

Applying k* on the filtration of Bc, 2o, gives a spectral sequence
EY =kVgry = kVBc,Zoy

The differential d" has (V,s) bidegree (1,7) so it goes 1 unit to the right and r
units up in (V,s) coordinates.

Before we can write down the E; page, we will need some notation: For a G-
Mackey functor M and subgroup H C G, Mg,y denotes the G-Mackey functor
defined on orbits as Mg,y(G/K) = M(G/H x G/K); the restriction, transfer
and Weyl group action in Mg, are induced from those in M. For G = C4 and
H = (,, the bottom level of Mc, ¢, is:

Me,/c,(Cs/e) = M(Cy/e x C4/Cy) = M(Cy/e) ® M(Cy/e) = M(Cys/e){x,y}

where x, y are used to distinguish the two copies of M(Cy/e), i.e. so that any ele-
ment of Mc, /¢, (C4/e) can be uniquely written as mx 4 m'y for m,m’ € M(Cy/e).
The Weyl group Wc,e = C4 acts as

g(mx+m'y) = (gm)(gx) + (gm’)(gy) = (gm)y + (gm')x

i.e. y = gx for a fixed generator g € Cy.
We can then describe Mc, /¢, in terms of M and the computation of the restric-
tion and transfer on x, which are shown in the following diagram:

M(Cy/Co){x + gx}

x+ngx+gx(] X—x+gx

Mc,/c, = C4/C2 {x Qx} Cy/Cy
—

x x x>—>0

If M = R is a Green functor, then Rc, /¢, is an R-module. Its top level, namely
R(C4/Cy){x + gx}, is an R(C4/C4) module via extension of scalars along the
restriction map Res; : R(C4/Cy) — R(Cy4/Co).

14



7.1. The E; page. The rows in the E; page are:
EXY — ixe
El*,4j+1 — k—ip—c
* A4j+2 —jp—A
E;T0 = (X0 ey,
*,4j+3 —io—A—1
EFTT = (k% e,
We will write e/?, efP+7, elP A, ¢lP+A+1 for the unit elements corresponding to the
E; terms above, living in degrees V = jp,jo +0,jo + A, jo + A + 1 and filtrations
s = 4j,4j + 1,45 + 2,4j + 3 respectively. We also write &”,2" for their restrictions
to the middle and bottom levels respectively. In this way:
*, L . .
El * _ k*{e]p’ e]p+(7} @ (k*)c4/cz{e]p+)\, e]p+)\+1}
and the three levels of the Mackey functor Ei* * from top to bottom, are:
* (i i * [ io+A jo+A+1
kE (e, et} @ kE e (x + gx), €T (x + gx) }
kg{éjp,éjp+‘7} ® ké {éjp+/\x, éjp"')‘gx, oAy e—jp+/\+1gx}
ke*{Ejp,Ejp+‘T} @ k: {E_jp+/\x, Ejp—i—/\gx, Ejp+?x+1x, Ejp+?x+1gx}
For the top level, kX is a kX module through the restriction Res? : kX — kX :
P K¢, Gy & 2 - Ke, G,
* —1]

k= [u
kgz = Qaia{l,\/ﬁ/\ﬂ/\}

(4

It’s important to note that this is not a cyclic kif module.

At this point, the reader may want to look over pictures of the E; page that we
have included in the Appendix A.

7.2. The d' differentials. In this subsection, we explain how the d' differentials
on each level are computed. We shall need this crucial remark:

Remark 7.1. The restriction of the C4 action on B¢, X to C; C C4 results ina C;
space equivalent to Bc,X,. The equivariant cohomology of this space is known
from subsection 4.1 and we shall use this result to compute the middle level
spectral sequence for Bc,X,. Further restricting to the trivial group e C Cy, we
get the nonequivariant space R P* and this will be used to compute the bottom
level spectral sequence.

First of all, the bottom level spectral sequence is concentrated on the diagonal
and the nontrivial d'’s are k{x,gx} — k{x,gx}, x — x + gx (since k*(R P*) is k
in every nonnegative degree).

The d'’s on middle and top level are computed from the fact that they are k*
module maps, hence determined on

. . ) ,
elf, elP 0 1 /@y, CelPTATE (x 4 o)
for the top level (¢,¢’ =0,1), and on
e, glpto giptAy alptA+1y
15



for the middle level. We remark that because kgz is not a cyclic ké; module, it
does not suffice to compute the top level d' on ef, el F7, elf+A eip+A+1,

The d! differentials from row 4j to row 4j + 1 are all determined by the dif-
ferential d' : kel® — k!=7¢/P*7. Note that k'~ is generated by 0|u; |7, ! (this
notation was defined in [Geo19] and expresses the generators of all three levels
from top to bottom separated by vertical columns). The d! is trivial on bottom
level, and using the fact that it commutes with restriction we can see that it’s
trivial in all levels.

Similarly, the d' differentials from row 4j + 1 to row 4; + 2 are all determined
by d : kelft? — (K51, /¢, et Note that (k~**1)¢, ¢, is generated by
iy (x + gx) |0ty (x, g%) T (x, gX)

The differential is trivial on the bottom level, but on middle level the C; computa-
tion gives k¢, (Bc,X2+) = 0 forcing the differential to be nontrivial (the only other

way to kill Ei’fAHAj +2(C4/ Co) = k? is for the d' differential from row 4j + 2 to
4j + 3 to be the identity k> — k? on middle level, which can’t happen as we show
in the next paragraph). Thus:

AL (&P = it & (x + gx)
A (elPT7) = vit el (x 4 gx)
The d! differentials from row 4;j + 2 to row 4j + 3 are determined by
1 a—ijo+A Z—ijo+A+1
d kc4/c2ugle]p+ — kC4/C2MUl€]p+ + and
1 a—i 7= jp+A =i m=— jo+A+1
d' ke, jcyily arIp Pt = ke, iy Ay

On bottom level, these d'’s all are x — x + gx and the commutation with restric-
tion and transfer gives:

(@0 x) = A (x 1 gx)
dl(a; el (x +gx)) =0
1 (i1, (x 4 gx)) = 0
Finally, the d! differentials from row 4j + 3 to row 4j + 4 are determined by
d' ke, c,ily P T — k177t and
db s ke, iy ARTReP AT K2 plote

These are trivial on the bottom level and by the commutation with restriction and
transfer we can see that they are trivial on all levels.

This settles the E; page computation.

7.3. Bottom level computation. We can immediately conclude that the bottom

level spectral sequence collapses in E;, giving a single k in every RO(Cy) degree.

Thus there are no extension problems and the C4 (Weyl group) action is trivial.
16



7.4. Middle level computation. By remark 7.1 we can immediately conclude that
the middle level spectral sequence collapses on E; = E.

If we have a middle level element « € E%’ and E% = 0 for t > s then a lifts
uniquely to ké; (Bc,X2+ ). If on the other hand ELY # 0 for some t > s, then there
are multiple lifts of a. In that case, we pick the lift for which there are no exotic
restrictions (if possible). For example, if Res?(a) = 0 in E and there is a unique
lift B of a such that Res?(8) = 0, then we use 8 as our lift of a.

With this in mind, and the computation of the E, terms, we have:

e The elements &/ survive the spectral sequence and lift uniquely to elements &/
in kéz (BC4ZZ+)~

e The elements ;& don’t survive, but every other multiple of &*+7 does.
These multiples are generated by:

&t N a Pt myef e

— The elements i,2/° 7 lift uniquely to elements &* in kgz (Bc,Zo4)-

- For each j > 0, the element 4,2/ has two distinct lifts. On Ee we have that
Res?(3,&°*7) = 0 and on kéz(BCAZz*) only one of the two lifts has trivial
restriction. We denote that lift by &/“.

- Similarly, the elements /7, 1,&/° "7 have trivial restriction on Es and unique
lifts with trivi'al restr;ction on kéz (Bc, X2+ ), that we denote by e]"ra“'

e The elements & *x,é/P+Agx don’t survive while the elements &+ (x + gx)
do. They lift uniquely to elements in ké; (Bc,Zo+) that we denote by &P+, We

have the relation
ve_jp+/\ = 0

e The elements &°™*+1(x + ¢x) don’t survive while the elements &+ 1y =
@+ 1oy do. They lift uniquely to elements in ké; (Bc, X4 ) that we denote by
..
eip+A+1

Remark 7.2. We should explain the notation used for the generators above.
First, the elements &Pt} will turn out to be the restrictions of top level ele-
ments e/*, e/P+* respectively, both in Es and in ka (Bc, X2+ ), hence their notation.

Second, the elements ef'“”,ele*)“H are never restrictions, neither in E, nor in
ka(BC4ZZ+), so their notation is rather ad-hoc: the au in e/™ serves as a re-
minder of the 1/ 1, in e/™ = \/G,1,&°"7, while the prime / in ¢ P2+ g used
to distinguish them from the top level generators e/****1 that the ¢ I+ trang-
fer to.

Finally, the elements & are restrictions of top level elements ¢/ in Eo, but not
in ké; (Bc,X2+) due to nontrivial Mackey functor extensions (exotic restrictions).

That's why we denote them by &7 as opposed to &*; the &* are reserved for
Res3(e/?) = &7 + i1, 0T 11 (see Lemma 7.12) .

U a ,0,au z0,u
€7, e

For convenience, when j = 0 we write &%,¢%,é" in place of & re-
spectively.

17



Now recall that ké; (Bc,Xo4) = kéz{ejPZ,efPﬁ‘TZ} (see subsection 4.1). We shall
write our middle level C4 generators in terms of the C, generators.

Proposition 7.3. We have:
510 — 7l o2
e]P — uo,e 102
g = ﬁ{jlu@eﬁpzﬂfz

. _it1 .
ol — u{, agzeZ]p2+0'2

- ﬁ{;rlggze(zﬁl)f?z

éjP+/\ = ﬂéggzgzj(h*‘ﬁ + lZ{TMg2€(2j+1)p2

FIoHA+T i L(2j+1)pat0n

iihe

Proof. The map f : EC422 — ECZZZ/ f(X1,X2, X3, X4,...) = (xl,X3, X2, X4,...) is a
Cy x Xy equivariant homeomorphism and induces a map on filtrations:

5(1) —— S(1+0) X S(p)

I >IN ]

S(1) — S(p2) — S(14p3) — S(203) — - --

(the downwards arrows are f while the arrows in the opposite direction are f~1).
To keep the notation tidy, we verify the correspondence of generators for j = 0.
In the C, spectral sequence, we have #%i1;1,¢**1 in degree A + 1 and filtrations
1,3 respectively. In the C, spectral sequence, we have a,,e2 "1 and ¢22*! in the
same degree and filtrations 2,3 respectively. The correspondence of filtrations

gives:
e/A-s-l — o202+l

5”11;1 — a02602+1 +€€20’2+1
where € = 0,1. Applying restriction on the second equation reveals that € = 0
and thus é*i1; 1 = a,,e”!. The correspondence of filtrations in degrees A — 1,7
gives:

“u-—1 _ 0
e, = €100, Ug, + Ugye”?

au —1 o+1

i, = €0, + €314,
o +1

e
A\ _ (%}
€’ = €405, + €5lUg,e

where €; = 0,1. Looking at degree 2A 4 ¢ — 2 in the C4 spectral sequence we see
that we have a relation

I
08" = 11,8" + €g\/Ar i\ 11,8 + €7ilgiiye "]

where again €; = 0,1. Combining the equations above we conclude that

3,8" = 11,8 4 /Ay il iy
18



and

SU

——1 _ 02
e'il, = Ug,e

eyl = ag,e”

e—/\ — alrzeﬂz 4 uaze(7'2+1

As a corollary we obtain the relations:
18" = a e + /Ay a et
ie™ = \/a i e
Ve = a, et
a e = /i i et + ayiget
’Z] .
7EJP+A =0
)
Therefore, ké; (Bc,Xo4)isspanned as a kéz module by &/, &/, el it g7, ¢lptA+l
under the relations above. The bottom level kX (Bc, X2+ ) is free on the restrictions
of e—jp, Ej,u/ éijr/\/ o iptA+T

The C4/Cy (Weyl group) action is trivial: The only extension extensions that
may arise are g&i? = & 4 ee'iPtA+1 and gl = el 4 ¢/glPTA where €,€’ = 0,1;
applying restriction shows that e = ¢/ = 0.

The cup product structure can be understood in terms of the C, generators c, b
of subsection 4.1. As an algebra, kgz (Bc,Xo4 ) is generated by &7, e, &", et M gr
under multiplicative relations that are implied by the correspondence of genera-
tors:

P = ii b?
¢" =1igap,b

au

e™ = tigag,c

e = flgUg,C

et = = ag,c+ tig,b
e'/\+1 = b

Remark 7.4. The reader may notice that this description of the middle level
ké(Bc422+) is rather different from the one given in Proposition 5.1. Let us
now explain this discrepancy. First, the relation
i\ e™ = \/a,ii,e"
allows us to replace ¢** by the quotient
Vai,et
ux
which is why e™ does not appear in Proposition 5.1 but (/@ #,é") /i) does.

Second, in Lemma 7.12, we shall see that & + ﬂae/’”l is the restriction of a top
19



level generator ¢?, which we denote by &*. We can replace the generator &* by the
element &7 and get the relation:

i
fgiiye M = 1,8 4+ aye" + /Ay, iy

Thus we can replace the generator el by the quotient

aylaye" + /@i e’

Z5)

which is what we do in the description of the middle level kéz(BC4ZZ+) found
in Proposition 5.1. For our convenience, we shall continue to use the generators
&n, el 'iPHAL in the following subsections instead of their replacements.

7.5. Top level differentials. In this subsection, we compute the top level of the
E« page.
From subsection 7.2, we know that (the top level of) the E; page is generated
by
o, aef T, i /Ay iy el
wherei,j > 0,¢,/ =0,1and a € k% \ {u™ , m > 0}. We also have the relation:
vilgelPth =0

For degree reasons, the elements ¢/’ survive the spectral sequence.
The elements 7, e/ 1 a7, /a,ii,e/P 11 are transfers hence also survive (by
the middle level computation of subsection 7.4).

If a € kif is a transfer then so are the elements ae/**? and thus they sur-

vive. The remaining elements a € ké; \ {uf ,m > 0} can be broken into three
categories:

e multiples of a,

e multiples of u, /ul,

. aoit

Proposition 7.5. The elements a,e/**7 survive the spectral sequence, while the elements
agu el support nontrivial differentials:

dZ(QUuerp—&-U) — vaff—&-zejpw\—&-l
fori, j > 0.

Proof. The elements a)e/**7 can only support d°(a,e/f+7) = eli*1P and applying
restriction shows that this cannot happen.

Fix j > 0. For degree reasons, the only differential a,e/**7 can support is
d?(ayelPT7) = vi2elP A1 If a,e/P+7 survives then it lifts to a unique element & of
k]g:za, while a,e/#*7 has two possible lifts to k]é):rza that differ by Trj (upe JPTA+1).
Both lifts have the same restriction, which by Lemma 7.12 is computed to be
&7 + i, A+1 (the proof of the Lemma works regardless of the survival of
agejp+‘7). Now one of those lifts, that we shall call §, satisfies:

ag
aﬁ = ag0
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in k{’:o4+3g(BC4ZZ+). Applying Res] gives that
2 . . 1;
Res? (%) Resi(B) =0 = v (7 + e PHAH1) = 0 = videiPtAtl =
which contradicts the computation of the module structure of the middle level.

O

Remark 7.6. The non-survival of as¢” is consistent with the computation that kzci
has dimension 1 (spanned by a2¢") by the computer program of [Geo19].

All the other elements of E; survive the spectral sequence:

Proposition 7.7. The elements (uy/ul)elft7, a ielft ai, /@ i el survive the
spectral sequence for i,j > 0.

Proof. We work page by page. On E; we have:

5, i o4 0 1
d? (i, lelP ) = elﬁe(ﬁ o
agly
. . 0 . u .
A2 (i1, APt = ey ————a,eUtP g5 —A_olit1p
23 Lt
[%dd o

where ¢; = 0,1. Multiplying by a, and using that a,i, e/*** = 0 and that
agily'\/Ayi)elPTA = 0 shows that €] = €3 = €3 = 0.

On E3 we have:
0

3 (i iptAy i+1)o+
d® (i elP )_elﬁe(] Jo+o
AgUy
d3(ﬂ;i /r/\ﬂ/\eijr/\) = e i73a/\e(j+l)p+r7
gy

3(Mhgioto) = ey 0 olitne
d <u£,e ) €3a(2,uf,_4e
where again €; = 0,1. We see that e; = e = 0 by multiplication with a,, while
€3 = 0 can be seen by multiplying with a2.

The pattern of higher differentials is the same as in Ej, E3 and the same argu-
ments show that there are no higher differentials. g

In conclusion:

Corollary 7.8. The E page is generated as a ké; module by

4 . o . 4 ,
e, ayelPTY, (uy Jul )Pt a /Ay, el TAYE
where i,j > 0 and €,€' = 0,1. We have relations:
vilgelf T = pi2elf A+ = 0

7.6. Coherent lifts. If we have a top level element & € Eig,v and Ef,g,v =0fort>s
then a lifts uniquely to ké; (Bc,Z2+). If on the other hand EL # 0 for some t > s,
then there are multiple choices of lifts of .

When it comes to fractions y/x, we should make sure our choices of lifts are
“coherent”. Let us explain what that means with an example: The element u,e”
has a unique lift xo while (u,/ul,)e” has multiple distinct lifts if i > 5. If we
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choose x; to lift (1, /u)e” then it will always be true that ulx; = xo; however, we
shouldn’t write x; = xp/u}, unless we can also guarantee that:

UgXj = Xj—1

This expresses the coherence of fractions (also discussed in subsection 3.2 and
Appendix B) which is the cancellation property:
ur 7 = Up o

i—1

Uy i
Uy Uy

This holds on E and we also want it to hold on ka (Bc,Zoy)-

One more property enjoyed by the (1, /}uf,)e" is that a2 (uy /ul,)e” = 0; it turns
out that there are unique lifts x; of (1, /ul)e” such that a2x; = 0 and those lifts
also satisfy the coherence property ugsx; = x;_1:

Proposition 7.9. For i,j > 0, there are unique lifts el /ul,el*™* /ul_ of the elements
(up/ul,)elP+o, aelP+ respectively that satisfy:
2 e

ag— =0
Uy

These lifts are also coherent.

Proof. Fix i,j > 0. We first deal with lifts of (1, /u{,)e/f*7.
Existence: Fix % to be the RO(Cy) degree of (u, /ul,)e/’*7 and write F® for the
decreasing filtration on ka (Bc, X+ ) defining the spectral sequence, namely:

E,ié,* — FS /FS+1

We start with any random lift ag € F¥*1 of (u) /ul)elf+; if a2ay = 0 then we are
done. Otherwise take sy maximal with a2ag € F0; since a2 (uy /ul,)el’™ = 0 we
have sy > 4j + 1. In fact so > 4j + 2 since E4+2%* = .

We now prove that sg > 4j +3: E¥+3% is spanned by @3 e/’ ***1 so we need
to investigate the possibility aZa = @ 'e/’*A 1 on E¥+3%. Multiplying by u,
reduces us to the case i = 0, where u!« is the unique lift of u)e/’™7. But we can
see directly that (a2 /a,)ula = 0 for degree reasons, hence a2ul,a = 0 as well.

As sy > 4j + 3, we can see directly that F%/Fot! = ESX s generated by an
element Be” where B € ka_v is ‘divlisible by a%. If o' € F% is a lift of (8/a%)e"
then ay = ag + o’ is a lift of (uy /ul)e/P+9. If a2x; = 0 then we are done, otherwise
ﬂglxl € F°1 for s; > 59 so we get ap by the same argument as above. Since F* = 0
for large enough s, this inductive process will eventually end with the desired
lift.

Uniqueness: If a,a’ are two lifts of (u,/ul)e/f*7 then their difference is a
finite sum p of elements p’e” where each g/ € ké; is a fraction with 4% in its
denominator. If a2a = a2a’ =0 thena2p =0 = a2/ =0 = pf/ =0 =
p=0.
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Coherence: Unfix i and let x; be the lift of (u,/ ui el with a2x; = 0. Then
ugx; is a lift of (uy /ui=1)e/f*7 and a2 (usx;) = 0 hence by uniqueness:

UgXi = Xj—1

The case of i, 'e/*" is near identical to what we did above for (u, /u )e’*7,
The changes are as follows. First, sy > 4j + 2 (instead of sy > 4j + 1). Next we can
see that sy > 4j +4 if i > 1, and multiplying by u, also proves the i = 0,1 cases
(this replaces the argument that showed sy > 4j + 3). The rest of the arguments
are identical. O

7.7. Top level generators. The elements ¢/’ have unique lifts to ké; (Bc,Xo4) that
we continue to denote by e/¥.

On the other hand, for each j > 0 there are two possible lifts of a ,\efp+‘7. There
is no good way to make a unique choice at this point, so we shall write ¢/ for
either.

In this subsection we shall prove:

Proposition 7.10. The k‘C: module ka(BC4Zz+) is generated by

j,u jo+A
oo gin &7 "
7 7 l l
Uy Uy

where i,j > 0.

By Cgrollary 7.8 'it sgfﬁces 'to prove that the ka-algebra generated by the ele-
ments e/f, el el Jul, elptry ul. contains lifts of the elements
iy e A oy, P, iy et T € B

Lemma 7.11. The elements

elptA+1 o

R Tr%(ﬁ;le/]p+/\+1)

Ug

are coherent lifts of iy 'elP+A*1 € Eq. Furthermore,

elptA elp+A+1
Ap———— — ——————
7 ul uit

Proof. We see directly that Tri (i1, ‘e +A+1) lift i1, e/PT2+1 and coherence follows
from the Frobenius relations. '

Next, we see directly from the Eo page that ¢/’ is not in the image of the
transfer Tr. Since Ker(a,) = Im(Tr3) in ka(Bc422+), we must have a module
extension of the form:

age]p+/\ — uge]p+/\+1

By Proposition 7.9, a2e/*** /ui. = 0 hence aye/*** /ul, is a transfer. The equation
above shows that a e/f4 / ul, # 0 and the only way agelPtr/ ul. can be a nonzero
transfer is for ayel ™ Jul = Ted (i, T1eio+A+1), 0

Before we can lift the rest of the E., generators, we will need the following
exotic restriction:
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Lemma 7.12. Both choices of e/ have the same (exotic) restriction:

Res}(el”) = & + fi e 1P tAtL
Proof. The two choices of ¢/ differ by uye/? A1 = Tri (i, t2+1) hence have
the same restriction. From the E., page:

Res}(el™) = & + it e lP+A+1
where € = 0, 1. Transferring this gives

T3 () = eugelf ™ +1

Now transferring the middle level relation

1\&" = aye" + /Ay iget

shows that ‘ ‘
uy T3 (6") = agupelft*
and thus Tr3 (&) # 0 which proves € = 1. O
Lemma 7.13. The elements
jo+A .
6]5 el

uy
s L)
Uy Uy

are coherent lifts of ;' \/@yiize/P " € Eoo.

ub—‘rl

Proof. Fixi,j > 0 and fix % to be the degree of the element
Uy el
Aol gy —
1 ul
(o4 (o4

This element is by definition in filtration 4; + 1, however its projection to EJTI*
is:
u—?‘a;\e]p*" + a/\u—’.\eijr‘T =0
Uy U
- e b 4 4j42,%
so it is actually in filtration 4j + 2. But observe that E
i,/ i et so it suffices to check that

is generated by

ju

er,u +ﬂ)\ -
i m
o o

is not 0 when projected to Ed* Multiplying by u!, reduces us to the case i = 0
and then:

A , . ’ , , ’
Res} ()6l +ayel™) = i) + i e P 43,6 = 1,0/F) 16PN 4 i i pe P
using Lemma 7.12 and the middle level computation of subsection 7.4. Projecting

4j+2,
ong * returns

fo\/Ap 8P £ 0

this restriction to E

as desired. .
Coherence of e]f/)H‘ /ul, follows from the coherence of u, /u!, and e/* /ul .
O
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Lemma 7.14. The elements
jo+A+1

e . /-
‘/T = Tra (i, \/ayiye PTAY)
[

are coherent lifts of iy '\/ayiielP A1 € Eqo. Furthermore,
jo+A ,
e]\‘fr elp+A+1
o= =~
Us Ug

Proof. The fact that these transfers are lifts follows from the E., page; coherence
follows from the Frobenius relations. We check the equality directly:

jo+A .
e . U . . . .
Vv gy i, age 4/——i /== a 4 jau =—i
ag i = 76] +11/\7 = Try (i, /ayiy )" +ay Try(e™a, ') =

. : Ca s . .
= Te5 (i, /Ay e + a iy, Tle P pgyelmig i) =
i i
— Tr%(ﬁ/\ﬂgl+1€]p+A + WMUZ'HE ]p+A+1) —
S
= Tl (Varm, e ) =
ejp+/\+1
VA
uit

We used the middle level relation a,e/™ = \/a,ii,&" + d,ii,&*t* and the fact
that ii;7e/P** is the restriction of e/ /ui. which follows from the same fact on
Eco. O

Lemmas 7.11, 7.13, 7.14 combined with Corollary 7.8 prove Proposition 7.10.
7.8. Mackey functor structure.

Proposition 7.15. The Mackey functor structure of k* (B¢, %o ) is determined by:

40, ' 4 (" i i 4 (P oA 5 —i
Res; (/) = éf , Res, ( ” ) =d"i,", Res, ( o ) =Pt
o o
. . o . . jpt+A
4/ jau-—iy _ 5 4 liotA+1-—i) _ . €
Tr2(€] Uy ) = agﬁ , Trz (6 P Uy ) = ﬂgﬁ
Uy Uy

‘ . ..
Res3(el") = & + i e PTATL
where i,j > 0.

Proof. We can see directly that there are no Mackey functor extensions for e/, e/ / u?,
and e/*** /ul.. The rest were established in the previous two subsections, apart
from:
. ‘ jou
40 jauz—iy _ . €
TI'Z(E] ’mugl) = ﬂgﬁ

u(T
To see this, recall that a2 (e/*/u’) = 0 hence a,(e/*/ul) is a transfer. Moreover,
ag (e /ul) # 0 which is seen on the E page, and the only way that a, (e /ul,)
can be a nonzero transfer is for a, (e/* /ul) = Trj(e™ a"). O
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7.9. Top level module relations. With the exception of relations expressing co-
herence (u,(e/* /ul) = el /ui=! and uy (e /ul) = e+ /ui=1), the rest of the
module relations are:

Proposition 7.16. The ké; module ka(BC422+) is generated by:

.. plM piptA
elP, el .
7 7 i i
Uy Uy
under the relations:
2 Lju
ag et 0
am i
A Uo
LA 2 jo+A
a ag ej’ﬂ i S ej'u _ gigJP
i—2 _m—1 1 2 - om
uy “ay' ul~ ay” ay  ug

fori,j,m > 0.
Proof. For m > 0, we have the possible extensions:
2 i
ag el Y. 0 oot

o uy T agugay
where each * denotes a nonnegative index (with different instances of * being
possibly different indices) and each e, = 0,1. Thus, multiplication by a, is an
isomorphism for both sides which reduces us tom = 1. Form = 1 and i > 0
there are no extensions i.e. €, = 0 for all *. This establishes

2 Lju
a; e
= =0

an ul
Similarly, if m > 0, we have the possible extensions:
2 Ljot+A .
g € — 5 e]P +/\ Z ot

m i i—2 _m—1
{Il/\ Uy ua a/\ m 11(71/[ LZA

and multiplying with a7’ reduces us to:

A
e]P+ _ Z e
~ aiu a} '
But
jo+A jo+A+1 ) )
2€ e 40 jo+A+1 —i+1
g —— = ag———— = a4 Try (e A 1) = 0
ul, u;
hence €, = 0 for all . Thus
GHT s e
a‘Kl uff ui- 2a;\rz 17y
and substituting
, j,u
JHN M
4 Ug o

gives the desired relation. For i = m = 1 we get (a2/ay)(e/****1/u,) = 0 which
lifts the Eq, relations viiye*t = viZelftA+1 = (. O
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As special cases we get the relations:

) elptA

o

iy
ﬂ¢27 elp+A

a, Ug
a2 elp+A

—a .
a7 ja
i+2

Uy ax ug
az e]p+)x

fori,j,m > 0.
7.10. Top level cup products.
Proposition 7.17. Asa ké; algebra, ka (Bc, X2y ) is generated by e“,e”/uf,, e/\/uf,, el.

Proof. First of all, e/’ = (ef)/ since there are no extensions in degree jp (to see
that (e?)/ # 0 apply restriction). Let A be the algebra span of e, e /u’,, e /ul, .
To see that e/* € A observe:

elfe" = eagayel’ + e + €' u elf A1

and since
., .
plP A1 — (e ]p+/\+1) — Tr%(e]pe /\+1) — elPM 1

we get that e/" € A regardless of the status of ¢, €'.
Now suppose by induction that all elements in filtration < 4; are in A. We
have that:

e SO T ot

e —_— T e e .

iy “agu :; H a*u*a;

where - - - are in filtration < 4] + 1 hence in A. Since e*f,e** € A for any * > 0,

we get /" /ul. € A. This establishes that everything in filtration < 4j + 1 is in A.
Finally,

. M ]p+A
e 48
P — + P 4+ ! e*h
ul, Z Z a u; u)\
where - - - are in filtration < 4j +2, 50 by the same argument e+ /ui € A as
well. This completes the induction step. O

Inverting uy, u) gives
hC A
k 4*[6",6“,6”,3 ]
modulo relations, which is isomorphic to

KX (Be, o) = klag, ay, ul, ui, w]/a% , |w| =1

There are two possible choices for w, differing by asu;!, but both work equally
well for the following arguments.
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Proposition 7.18. After potentially replacing the generators e®,e" /ul,, e’ /ul, with al-
gebra generators in the same degrees of ka(BQZH) and satisfying the same already
established relations, the localization map

k& (Be,Zay) — K (Bc,Ta )
is given by:

et — ugu w

M upw?

e = UgU W + Ugdyw

e — uguyw* + agu w? + ugayw? + aga,w

Proof. Using the C, result (see subsection 4.1), we have the correspondence on
the middle level generators:

& s il w

et 17!)&02

Res3(e?) — i, (i w? + a w)
& fig(ayw? + iyw)

from which we can deduce that the correspondence on top level is:

e — ugu \w + e1a5u)

eN = upw? + exapuy luyw

e = ugu W + e3a,u w? + ugayw

e — uguyw* + egapuwd + uya w? + esa a w

where the €; range in 0, 1.

We may add eja,uy /uf, to e”/uf, to force €; = 0; we may add (—:211(76”/uf7+2 to
et/ uf, to force e = 0 and we may add €3a,e" to e? to force e3 = 0.
It remains to prove that €4 = €5 = 1. This is a computation based on the Bockstein

homomorphism S : ké}(X) — ka+1(X). For X = S° we have:

Blas) = Blar) = B(ur) =0
Bug) = ag

For X = Bc,Xp, we see that B(ef) = 0 for degree reasons (kpci_l(BC422+) = 0)

and in the homotopy fixed points, f(w) = w?, B(w?®) = w*. Thus applying B on

e® — uguyw* + egaguw® + uya,w? + esaya,w shows that €4 = e5 = 1. [l
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Proposition 7.19. We have the multiplicative relations in ka (Bc, X2+ ):

u LU
et m
i i 3¢
Uug 1), uffﬂ
iiﬂ u)\ ea+a/\ eu
i - i+j i+j
Uo uy Uy Uy
et u u
G e
Uy o Uy
A LA A
e e Uy Uy
[ 0 a
ul i TRt T
o Uy Uy o o
A U
e e
al _ 0 0
T e +ac—ge
o o o

eu
(e”)2 = ugete’ + ag—eP + ugyaye’ + aya e
Ug

Proof. First,

et et Uy Uy Uy A
o= ouAﬁ+e1ag +]e + € i+j—2€ + -
U ul, Uy Uy
where ¢; = 0,1 and --- is the sum of elements mapping to 0 in homotopy

fixed points, but all havmg denominator a2. Mapping to homotopy fixed points
shows €p = €; = 0 and e; = 1, while multlplymg by a2 trivializes the LHS (by
a(e"/ul) = 0) and thus shows that - - - = 0.

The same argument applied to:

A u

etet 0a3 n a L0 S UA Ay
uboJ €Om 1400\ 5 z+] €207 =5 1+] €3 1-&-]e 4o i-i-je
o Ul Aglly
shows
e et B Gai e n Uy
P e e A e A
o Uy AgUy Uy Uy

There are two ways to show that €9 = 0: The first is to multiply with ayu, -2

and compute a,e’ (e /u2) using a,e’ = Tri(¢**1) together with the Frobenius
relation and our knowledge of the multiplicative structure of the middle level
from subsection 7.4. The alternative is to observe that in the spectral sequence,
if a,b live in filtrations > n then so does ab. Before the modifications to the
generators done in the proof of Proposition 7.18, e*/ul, e* were in filtration > 1
and ¢!/ uf, were in filtration > 2. Thus, with the original generators, the extension
for e*e" /u2 does not involve the filtration 0 term a30/4a,. This is true even after
performing the modifications prescribed in the proof of Proposition 7.18, since
said modifications never involve terms with 6. Thus ¢y = 0.
Similarly we have:
2" 9a Oa, et Uy et
e — = e +62aga,\—+e3aa—e +e4a,\—+e5
uy - ot 3 uy Uy Uy ub 1

ep—i-
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for i > 3, and mapping to homotopy fixed points and multiplying by a2 shows
u 042

e .a Ga./\ e’ +a,

uy U agul 3 u

Upr 4 29N 0
—e + =3¢
(o

g

Multiplying by a, and using that a,(e*/u’,) = Tri(e™d, ") shows that e; = 0. To
show €y = 0 we use the filtration argument above.
These arguments also work with:

etet  6a3 0a) 0y et N M\ el N
L7 0 T ¢ T @feda Ty T Ee i ¢ T A
o iy Uy Ag iy Uy, Uy Uy
Up
N oP ..
+ €5 ST e+
o
A A
e fa e agu Oa u
e’ — =€ i)izeﬂ + €700y —— + €3 ‘Li\ep + €9 —ef + 6107/\16’)6” +---
ul, aguly ul; ul; Agayitly ul

u
(ea)Z = €11‘1(2rﬂ%\ + enpagae” + ezugaye’ + €14aau*€p + erplige’el
o

to complete the proof. g
We also have the nontrivial Bockstein:
B(e"/uy) = e
APPENDIX A. PICTURES OF THE SPECTRAL SEQUENCE

In this appendix, we have included pictures of the E; page of the spectral
sequence from section 7. In each page, the three levels of the spectral sequence
are drawn in three separate figures from top to bottom, using (V,s) coordinates.
For notational simplicity and due to limited space, we suppress the ¢"’s and
x,gx’s from the generators. The ¢"’s can be recovered by looking at the filtration
s (e.g. in filtration s = 4j we get ¢/’) and to denote the presence of 2-dimensional
vector spaces k{x, gx} we write k? next to each generator.

For example, in the very first picture there is an element xq;/ u(ZT in coordi-
nates (5,5). This represents the fact that the top level of Ef’5 is generated by
(x,1/u%)eP ™. In the picture directly below and in the same coordinates we have
vil, > meaning that the middle level of Ef’5 is generated by (vil, 2)e’ 7. We have

Trs (v, 20 t0) = &;ef””
uU’

In the same picture, if we look at coordinates (2,2) we see v, vkz,ﬁglkz in the
top, middle and bottom levels respectively. This represents that the three levels
of E%’z are generated by ve’(x + gx) for the top, vé*x,ve* gx for the middle, and
ﬁ)fle"/\x, ﬁ;lé‘)‘ gx for the bottom level. We have

Trs (vex) = ve (x + gx)

These pictures are all obtained automatically by the computer program of [Geo19]
available here.
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ArpeNDIX B. THE RO(C4) HOMOLOGY OF A POINT IN [F) COEFFICIENTS

In this appendix, we write down the detailed computation of ky for % €
RO(C4). We use the following notation for Mackey functors (compare with
[Geol9)).

k= %;0 ko = EZS (k) = gzj (k) = ﬁZB
TR R
K N A
L= p’L= Q= i Q k
T ()
Li= 1{30 K= fZS
{0 o)

Henceforth n,m > 0. We employ the notation a|b|c to denote the generators of
all three levels of a Mackey functor, from top to bottom, used in [Geo19].

B.1. k,StotmA,

k if x=n+2m
Qﬁ if n<x<n+2m and x* —nis even

k. (SnaerA) —
Q if n+1<*x<n+2m and *—nisodd
(k) if 0<x<mn
o upult|agal |ayal generates kyiop, =k
. uf}aT‘iui\W}ﬁf\”_iﬁMO generates k, o = Qf for 0<i<m

. agugflaT_luS\\ﬂﬁﬁﬁ""ai\_la/ﬁ,\a,\m generates k, 5 1=Q for 1<i<m,n>0

m—i i
Aoy Uy i i1 /== :
o — 2 |aV Tl /a1 |0 generates ky; 1 =Q for 1<i<m,n=0

Ug

e a~uia™0lo generates k; = (Z /2) for 0<i<n
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B.2. k,S—no—mA,

If n, m are not both 0,

L if x=-n—-2m and m #0
p*L if *=—n—2m and n>1,m=0
ko if x=-1 and n=1,m=0
k(87" = Qf if —n—2m<*x<-n—1 and *+nisodd
Q if -n—-2m<*x<-n—1 and *+niseven
(ky if —n—1<x<-1 and m #0
(ky if —n+1<x<-1 and m =0
o Trt 1 ‘Tr2 ! L enerates k =L for m#0
Wagar ) |70 agar ) lapay 8 =
. 2 i, "y " generates k_, = p*L for m=0,n>2
[
o 0|a; i, ! generates k_1 = k_ for n=1,m=0
S S ’ .
. . . -10 enerates k_,_ 3=0Q% for 2<i<m
uga’)fzu;\” i ﬁgﬁ;\izﬁ’;\nil g n—2m+2i—3 Q
xO,l v .
. =T | i1 ‘0 generates k_,_»; = Q for 1<i<m
oy Uy oy Uy
o 01 ol nerates k (k) for 0<i<n—1,m#0
o — generates k_;_, = or 0<i<n—-1m
Ag Ugdy
6 .
. .7‘0‘0 generates k_; = (k) for 2<i<n,m=0
anfzunfz
g [
B.3. k.S™ "7 1f n,m are both nonzero,
(k) if 2m—n<x< =2
k if x=2m—-—n>-1
Yok if *=2m—n< -2
Q if -1<x<2m-—n and * +nis odd
ki (S™MA10Y = ¢ if —1<*x<2m—n and * + 1 is even
YoQ if —n+1<*x<2m—n and *+nisodd and x < -2
(kYo Q' if —n+2<*<2m—n and *+niseven and * < —2
Q if x=-n and n > 2
(k) if x=-1 and n=1
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X |TY |y
e iy tes the k in ko,
° wr | | generates the k in ky,_y
ai umfi ﬁi ﬂmfi
° )‘7)“% 0 generates the Q%inkyy_p_ni for
ull il
apat w1 i A '
° Uu?;Jr)ll ﬁ/;} A ‘0 generates the Q in kyy,_,, ;1 for
a’ .
e —2—10/0 enerates the (k) ink_; for
n—i,  i—2 &
ag Ug
L p—
o — 7 ‘a/\ i, "0 generates k_, = Q for
Uy
e 0 ﬂ;%ﬁ\”’O generates k_j = U for
B.4. k.S"~™A_ 1f n,m are both nonzero,
Qji if x=n-2 and n,m > 2
(k) if *+=-1 and n=1,m >2
(ky®Q if n—2m<x<n—2 and *+niseven
(kKY® Q! if n—2m<*<n—2 and *+nisodd
Q if n—2m<x<n—2 and *+niseven
ki (S"TmAY = ¢ o if n—2m<x<n—2 and *+nisodd
Le (k) if x=n—2m and n—2m >0
L if x=n-—2m and n—2m <0
Lt if x=n-2 and n>1
K if x=-1 and n=1

0<*x<n-—2m
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* >0
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* < 0
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2,,n—2 n
asu Vil
o« 7 ’ _m_”l 0 generates k, = QF for n,m>2
ﬂA g/\
ol TR
. 0‘ _mfl 0 generates k,_p = (k) for n=1m>2
ax
Xooul vl i )
. i—10,2m—0i—1 ————|0 generates the Qink, 2yi2i 2 for 2<i<m-—1
ay Uy ay Huy
sult st . .
e — 7 | 7 |0 generates the Qfin ky_omani—z for 2<i<m
a172um71 a172ﬂm71
A A A A
Xo,zug il —=—m .
. 2 | g1 | ey generates the L in k;,_oy, for m>2
AWy
a2y—2 -
° aai ’Uﬂ(’; ﬂﬁﬂ;l generates k,_p = Lt for n>1,m=1
) O‘Uﬁg ﬁgﬁxl generates k_; = K> for n=m=1
ai Z/lnfi ) )
o aa”{; O‘O generates the (k) ink,_; for 2<i<nm
A

B.5. Subtleties about quotients. In this subsection, we investigate the subtleties
regarding quotients y/x, similar to what we did in [Geo19] for the integer coeffi-
cient case.

The crux of the matter is as follows: If we have ax = y in k% then we can
immediately conclude that a = y/x as long as a is the unique element in its
RO(Cy) degree satisfying ax = y. Unfortunately, as we can see from the detailed
description of k%, there are degrees % for which kiﬁ* is a two dimensional vector
space, generated by elements a, b both satisfying ax = bx = y; in this case a, b are
both candidates for y/x and we need to distinguish them somehow. This is done
by looking at the products of a, b with other Euler/orientation classes.

Cy

For a concrete example, take k A which is k? with generators a,b such

—2+40—
that y
Ugd = Ugh = —;‘
u(f

so both a, b are candidates for u, /uz (for degree reasons, there is a unique choice
for u, /u3). To distinguish a, b, we use multiplication by a2: for one generator, say
a, we have a2a = 0 while for the other generator we get a2b = 0a,. So now

at(a+b) = a2b = Oa,

and both a + b, b are candidates for (6a,)/a2. However, 8/a2 is defined uniquely
and we insist
Xy _ Y
zZw  zZw
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whenever xy # 0, thus (0a,)/a2 is uniquely defined from:

QIZA 0
T 30
610— uO’

Multiplying with u, returns 0 and as ub # 0, we conclude that

ba

ag

a+b=

Since a2a = 0 and a2b = fa, we conclude that:

u u Oa
==t
Ug Ug ag

More generally, we can use 1, and 4, multiplication to distinguish

* x>0 *>0 * k>0 *>0
ayuy Ga)L ayuy GaA
7 T>D L >

uh ekt oug ay=tur

Here, * > 0 is a generic index i.e. the 12 total instances of * can all be different;
the important thing is that the *’s are chosen so that these three elements are in
the same RO(Cy) degree.

We can also distinguish between

% x>0 x>0 * x>0 *>0
Agayuy 0a) Agayuy fa)

w0 a>D
Ug a;="uy

* *>2
Ug a;="uy

by u, and a, multiplication, although it’s easier to use that only the first of the
three elements is a transfer.
We distinguish

*>2 % * o k>2 % *
Ay~ Uy Xp2Ug A5 Uy X02Uy

* k0% 7 * P
ay, —auy a4y aruy

7

by af\ multiplication (which for large enough i annihilates only the second term)
and a, multiplication (which annihilates only the first term). We similarly distin-
guish

*2>2 % *>2 %

ag="u} suy ay u0+ su
a, ayut’ oay aju;
by 4} and a2 multiplication.
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